HVOF

High Velocity Oxygen Fuel Thermal Spray Process

HVOF Process Schematic Diagram

Schematic Diagram of the HVOF Process

The HVOF (High Velocity Oxygen Fuel) Thermal Spray Process is basically the same as the combustion powder spray process (LVOF) except that this process has been developed to produce extremely high spray velocity. There are a number of HVOF guns which use different methods to achieve high velocity spraying. One method is basically a high pressure water cooled HVOF combustion chamber and long nozzle. Fuel (kerosene, acetylene, propylene and hydrogen) and oxygen are fed into the chamber, combustion produces a hot high pressure flame which is forced down a nozzle increasing its velocity. Powder may be fed axially into the HVOF combustion chamber under high pressure or fed through the side of laval type nozzle where the pressure is lower. Another method uses a simpler system of a high pressure combustion nozzle and air cap. Fuel gas (propane, propylene or hydrogen) and oxygen are supplied at high pressure, combustion occurs outside the nozzle but within an air cap supplied with compressed air. The compressed air pinches and accelerates the flame and acts as a coolant for the HVOF gun. Powder is fed at high pressure axially from the centre of the nozzle.

HVOF Spraying

HVOF PROCESS

The coatings produced by HVOF are similar to those produce by the detonation process. HVOF coatings are very dense, strong and show low residual tensile stress or in some cases compressive stress, which enable very much thicker coatings to be applied than previously possible with the other processes.

The very high kinetic energy of particles striking the substrate surface do not require the particles to be fully molten to form high quality HVOF coatings. This is certainly an advantage for the carbide cermet type coatings and is where this process really excels.

HVOF coatings are used in applications requiring the highest density and strength not found in most other thermal spray processes. New applications, previously not suitable for thermal spray coatings are becoming viable.

Gordon England Surface Engineering Forum








Gordon England Independent Thermal Spray Coating Consultant
Telephone: +44 (0)1252 405186

Email: tsc@gordonengland.co.uk

Site Links



Introducing

Nature of Thermal Spray Coatings

Surface Engineering in a Nutshell

Surface Engineering Forum

Thermal Spray Gun Repair Service

Plasma Consumable Parts

Thermal Spray Powder Supplies

Applications:

Thermal Spray Coatings on Carbon and Glass Fibre Reinforced Polymers

HVOF Coating of Paper Making Roll

Abradable Coatings

Photomicrographs

Thermal Spray Processes:

Combustion Wire Thermal Spray Process

Combustion Powder Thermal Spray Process

Arc Wire Thermal Spray Process

Plasma Thermal Spray Process

HVOF Thermal Spray Process

HVAF Thermal Spray Process

Detonation Thermal Spray Process

Plasma Flame Theory

Cold Spray Coating Process



Wear and Use of Thermal Spray Coatings

Corrosion and Use of Thermal Spray Coatings

Glossary of Thermal Spray and Surface Engineering Terms

Image Directory for Thermal Spray Coatings

Plasma Gas Flow Information

Plasma Gas Flow Correction Calculator

Contact Form

Links to other interesting sites related to thermal spray and surface engineering

Reciprocal Links

Periodic Table of the Elements

SI Units

Calculators for Conversion between Units of Measurement

Hardness Testing

Surface Engineering Message Board Archive

Surface Engineering Message Board Archive Index

Photography Gallery

Photography Gallery3


© Copyright Gordon England