Gordon England Surface Engineering Forum

Plasma Flame Theory

Some argue that this page should be titled "Plasma Jet Theory" and not "Plasma Flame Theory". A plasma does not necessarily involve the process of combustion, burning or oxidation of material. The argument that the term "flame" can only be applied to a process of combustion, burning or oxidation is dependent on the definition of "flame". The title "Plasma Flame Theory" used here assumes this particular definition of "flame" to be "a stream of vapour or gas made luminous by heat" or "something resembling a flame in motion, brilliance, intensity, or shape".

Temperature as a Function of Gas Energy Content

Plasma Energy content per volume of gas verses Temperature

A plasma is an electrically conductive gas containing charged particles. When atoms of a gas are excited to high energy levels, the atoms loose hold of some of their electrons and become ionised producing a plasma containing electrically charged particles - ions and electrons.

The plasma generated for plasma spraying usually incorporates one or a mixture of the following gases:

Plasma flames for thermal spraying can produce temperatures around 7,000 to 20,000K far above the melting temperature (and vapour temperature) of any known material. The extreme temperature of the plasma is not the only reason for the effective heating properties. If for example helium gas is heated to around 13,000K without a plasma forming, it would have insufficient energy for normal plasma spraying. Nitrogen on the other hand heated to 10,000K going through dissociation and ionisation forming a plasma is an effective heating media for thermal spraying, being able to supply about six times more energy than an equal volume of helium at 13,000K. The plasma is able to supply large amounts of energy due to the energy changes associated with dissociating molecular gases to atomic gases and ionisation which occur with little change in temperature.

The reverse process provides most of the energy for heating the spray material without a dramatic drop in temperature:

Nitrogen and hydrogen are diatomic gases (two atoms to every molecule). These plasmas have higher energy contents for a given temperature than the atomic gases of argon and helium because of the energy associated with dissociation of molecules.

Argon and Helium are monatomic gases (the atoms don't combine to form molecules) These plasmas are relatively lower in energy content and higher in temperature than the plasmas from diatomic gases.

Nitrogen is a general purpose primary gas used alone or with hydrogen secondary gas.

Nitrogen also benefits from being the cheapest plasma gas. Nitrogen tends to be inert to most spray material except materials like titanium.

Argon is probably the most favoured primary plasma gas and is usually used with a secondary plasma gas (hydrogen, helium and nitrogen) to increase its energy. Argon is the easiest of these gases to form a plasma and tends to be less aggressive towards electrode and nozzle hardware. Most plasmas are started up using pure argon. Argon is a noble gas and is completely inert to all spray materials.

Hydrogen is mainly used as a secondary gas, it dramatically effects heat transfer properties and acts as anti-oxidant. Small amounts of hydrogen added to the other plasma gases dramatically alters the plasma characteristics and energy levels and is thus used as one control for setting plasma voltage and energy.

Helium is mainly used as a secondary gas with argon. Helium is a noble gas and is completely inert to all spray materials and is used when hydrogen or nitrogen secondary gases have deleterious effects. Helium imparts good heat transfer properties and gives high sensitivity for control of plasma energy. It is commonly used for high velocity plasma spraying of high quality carbide coatings where process conditions are critical.

More information on Plasma Thermal Spray Process





Custom Search

Gordon England Thermal Spray Coating Consultant
Telephone: +44 (0) 1252 405186
Mobile: 07951 120293
Please Click Here to Email
Gordon England Thermal Spray Coating Consultant

THERMAL SPRAY COATING PAGE INDEX

Homepage
Introducing
Nature of Thermal Spray Coatings
Surface Engineering Forum
Surface Engineering in a Nutshell
Thermal Spray Gun Repair Service * Plasma Consumable Parts * Thermal Spray Powder Supplies

Applications: Thermal Spray Coatings on Carbon and Glass Fibre Reinforced Polymers * HVOF Coating of Paper Making Roll * Abradable Coatings *

Photomicrographs:

Thermal Spray Processes: Combustion Wire Thermal Spray Process * Combustion Powder Thermal Spray Process * Arc Wire Thermal Spray Process * Plasma Thermal Spray Process * HVOF Thermal Spray Process * Detonation Thermal Spray Process * Plasma Flame Theory * Cold Spray Coating Process *

Wear and Thermal Spray Coatings
Corrosion and Thermal Spray Coatings
Glossary of Thermal Spray and Surface Engineering Terms
Image Directory for Thermal Spray Coatings
Plasma Gas Flow Information
Plasma Gas Flow Correction Calculator
Contact Form
Links to other interesting sites related to thermal spray and surface engineering * Reciprocal Links

Periodic Table of the Elements
SI Units * Calculators for Conversion between Units of Measurement
Hardness Testing
Surface Engineering Message Board Archive
Surface Engineering Message Board Archive Index
Search This Site
Photography Gallery


© Copyright Gordon England